Difference between revisions of "Projects:Sketchy recognition"

From DiVersions
Jump to navigation Jump to search
((Re)sources)
Line 29: Line 29:
 
voor nieuwe vormen van online lezen en schrijven. Hij is als docent betrokken bij het Experimental
 
voor nieuwe vormen van online lezen en schrijven. Hij is als docent betrokken bij het Experimental
 
Publishing Traject van de Media Design Master aan het Piet Zwart Instituut in Rotterdam.
 
Publishing Traject van de Media Design Master aan het Piet Zwart Instituut in Rotterdam.
 +
 +
=== Sources ===
 +
 +
* MIM/Carmentis Saskia Willaerts
 +
* Contours / Algorithm (what is the algorithm in use in opencv?)
 +
* Sketch recognition database / programmer of model
  
 
== (Re)sources ==
 
== (Re)sources ==
Line 43: Line 49:
 
* C/C++ implementation for the paper "How do Human Sketch Objects?" https://github.com/GTmac/Classify-Human-Sketches  
 
* C/C++ implementation for the paper "How do Human Sketch Objects?" https://github.com/GTmac/Classify-Human-Sketches  
 
* Python/Jupyter https://github.com/ajwadjaved/Sketch-Recognizer
 
* Python/Jupyter https://github.com/ajwadjaved/Sketch-Recognizer
* Another one... https://github.com/jalayrac/sketch-recognizer
+
* [https://github.com/jalayrac/sketch-recognizer jalayrac's working python code] (what we used!)
 
 
jalayrac's code works with python3
 
   
 
    apt get install caffe-cpu
 
 
 
Installation: feeding contours into sketch classifier , loops.
 
 
 
Live drawing --> classifier --> pull archive images that match the classifier tags and project back onto drawing?
 
 
 
Selection of "best of contours" from the collection (based on the MIM samples already processed?)
 
 
 
[http://vandal.ist/diversions2019/mim/contours.html MIM Contours]
 
  
=== sketch recognition ===
+
=== Working sketches ===
 
+
* [http://vandal.ist/diversions2019/mim/contours.html MIM Contours]
[http://vandal.ist/diversions2019/mim/sketchrecog.html Sketch recognition (working sketch)]
+
* [http://vandal.ist/diversions2019/mim/sketchrecog.html Sketch recognition outcomes]
  
 
some "best of" links:
 
some "best of" links:
 
 
* Teddy bear ... http://vandal.ist/diversions2019/mim/sketchrecog.html#4306-02
 
* Teddy bear ... http://vandal.ist/diversions2019/mim/sketchrecog.html#4306-02
 
* Ice cream cone ... http://vandal.ist/diversions2019/mim/sketchrecog.html#4290
 
* Ice cream cone ... http://vandal.ist/diversions2019/mim/sketchrecog.html#4290
Line 69: Line 62:
 
* binoculars http://vandal.ist/diversions2019/mim/sketchrecog.html#3206
 
* binoculars http://vandal.ist/diversions2019/mim/sketchrecog.html#3206
  
 +
 +
=== Rough notes (not for publication ;) ===
 
cf Saskia's story of misnaming an instrument.
 
cf Saskia's story of misnaming an instrument.
 
(The end of which was that the African museum contacted wanted not that the instrument be returned, but that the name be updated to reflect the fact that the name incorrectly referred to a larger class of instruments, and not the particular instrument in question)
 
(The end of which was that the African museum contacted wanted not that the instrument be returned, but that the name be updated to reflect the fact that the name incorrectly referred to a larger class of instruments, and not the particular instrument in question)
Line 77: Line 72:
  
 
Meta data as interstitial frames introducing the sequences of images + sketch predictions.
 
Meta data as interstitial frames introducing the sequences of images + sketch predictions.
 
==== List of sources: ====
 
 
* MIM/Carmentis Saskia Willaerts
 
* Contours / Algorithm (what is the algorithm in use in opencv?)
 
* Sketch recognition database / programmer of model
 
  
 
Algorithms reading algorithms...
 
Algorithms reading algorithms...

Revision as of 09:54, 30 August 2019

Sketch Recognition (working title) (formerly Different orders co-exist)

Collections: Koninklijke Musea voor Kunst en Geschiedenis/MIM

Working sketch

Early sketch

old description

Een van de eerste stappen om een reeks documenten te begrijpen, is door ze te ordenen. Naast het gevoel van controle dat het je geeft, vertelt elke ordening een ander verhaal over een archief. Een opsomming van alle elementen door middel van ‘unique id’ bijvoorbeeld is gebaseerd op de interne index die de database genereert om de informatie bij te houden. Maar die ordening vertelt ook over de menselijke arbeid die het "systeem voedt". De elementen werden één voor één geïntroduceerd, door één of meer mensen, op het moment dat het materiaal beschikbaar was. En de opeenvolging van 'unieke ids' weerspiegelt de opeenvolging van inserts in de database, en laat daarmee iets zien van de relaties tussen mensen, informatie en machines. Different orders co-exist stelt dat we geen directe toegang hebben tot een archief en de bijbehorende documenten, maar enkel via een dialoog met veelal technologische en algoritmische gesprekspartners.

bio

Nicolas Malevé is beeldend kunstenaar, computer programmeur en data-activist. Op dit moment woont en werkt hij tussen Brussel en Londen aan een onderzoek naar hoe en waarom machinale normen over ‘kijken’ in Computer Vision algoritmes worden geïmplementeerd.

Michael Murtaugh doet onderzoek naar community databases, interactieve documentaire en tools voor nieuwe vormen van online lezen en schrijven. Hij is als docent betrokken bij het Experimental Publishing Traject van de Media Design Master aan het Piet Zwart Instituut in Rotterdam.

Sources

  • MIM/Carmentis Saskia Willaerts
  • Contours / Algorithm (what is the algorithm in use in opencv?)
  • Sketch recognition database / programmer of model

(Re)sources

Humans have used sketching to depict our visual world since prehistoric times. Even today, sketching is possibly the only rendering technique readily available to all humans. This paper is the first large scale exploration of human sketches. We analyze the distribution of non-expert sketches of everyday objects such as 'teapot' or 'car'. We ask humans to sketch objects of a given category and gather 20,000 unique sketches evenly distributed over 250 object categories. With this dataset we perform a perceptual study and find that humans can correctly identify the object category of a sketch 73% of the time. We compare human performance against computational recognition methods. We develop a bag-of-features sketch representation and use multi-class support vector machines, trained on our sketch dataset, to classify sketches. The resulting recognition method is able to identify unknown sketches with 56% accuracy (chance is 0.4%). Based on the computational model, we demonstrate an interactive sketch recognition system. We release the complete crowd-sourced dataset of sketches to the community.

Code

Working sketches

some "best of" links:


Rough notes (not for publication ;)

cf Saskia's story of misnaming an instrument. (The end of which was that the African museum contacted wanted not that the instrument be returned, but that the name be updated to reflect the fact that the name incorrectly referred to a larger class of instruments, and not the particular instrument in question)

How explicit do we need to be with our intentionality. Danger: Flatten the potential? Maybe keep it simple / straightforward

Meta data as interstitial frames introducing the sequences of images + sketch predictions.

Algorithms reading algorithms...